Cycle index of direct product of permutation groups and number of equivalence classes of subsets of Z_{v}

Wan-Di Wei
Department of Mathematics, Sichuan University, Chengdu 610064, China

Ju-Yong Xu
Department of Mathematics, Wuhan Institute of Urban Construction, Wuhan, China

Received 3 August 1990

Abstract

Let v be a positive integer and Z_{v} the residue class ring modulo v. Two subsets D_{1} and D_{2} of Z_{v} are said to be equivalent if there exist $t, s \in Z_{v}$ with $\operatorname{gcd}(t, v)=1$ such that $D_{1}=t D_{2}+s$. We are interested in the number of equivalence classes of k-subsets of Z_{v} and the number of equivalence classes of subsets of Z_{0}. We first find the cycle index of the direct product of permutation groups, and then use it to obtain the numbers mentioned above which can be viewed as upper bounds, respectively, for the number of inequivalent (v, k, λ) cyclic difference sets (when $k(k-1)=\lambda(v-1)$) and for the number of inequivalent cyclic difference sets in Z_{v}.

1. Introduction

Let v be a positive integer and Z_{v} the residue class ring modulo v. Motivated by the concept of equivalence of cyclic difference sets (cf. [1,2 or 5]), Wei et al. [6] have introduced a similar equivalence relation among the subsets of Z_{v}, and studied the number of equivalence classes. Two subsets D_{1} and D_{2} of Z_{v} are said to be equivalent, denoted by $D_{1} \sim D_{2}$, if there exist $t, s \in Z_{v}$ with $\operatorname{gcd}(t, v)=1$ such that $D_{1}=t D_{2}+s$.

Obviously, the relation \sim is an equivalence relation, under which the set of subsets of Z_{v} are partitioned into disjoint equivalence classes, and the subsets in one equivalence class have the same cardinality.
Let

$$
\begin{equation*}
T_{v}=\left\{(t, s) \mid t, s \in Z_{v}, \operatorname{gcd}(t, v)=1\right\} . \tag{1.1}
\end{equation*}
$$

Then $\left|T_{v}\right|=\varphi(v) v$, where $\varphi(v)$ is the Euler's phi-function. One can associate each element $(t, s) \in T$ with the following permutation on Z_{v} :

$$
\sigma(t, s)=\left(\begin{array}{ll}
0 & 1 \cdots d \cdots v-1 \\
s & t+s \cdots t d+s \cdots t(v-1)+s
\end{array}\right)
$$

Let $G_{v}=\left\{\sigma(t, s) \mid(t, s) \in T_{v}\right\}$. For $\sigma(t, s), \sigma\left(t^{\prime}, s^{\prime}\right) \in G_{v}$, we define

$$
\left(\sigma(t, s) \cdot \sigma\left(t^{\prime}, s^{\prime}\right)\right) d=\sigma(t, s)\left(\sigma\left(t^{\prime}, s^{\prime}\right) d\right), \quad d \in Z_{v}
$$

Then

$$
\begin{equation*}
\sigma(t, s) \cdot \sigma\left(t^{\prime}, s^{\prime}\right)=\sigma\left(t t^{\prime}, t s^{\prime}+s\right) \in G_{v} \tag{1.2}
\end{equation*}
$$

and G_{v} is a permutation group on Z_{v}. Denote the cycle index of G_{v} (cf. [3] or [4]) by

$$
\begin{equation*}
P_{G_{v}}\left(x_{1}, x_{2}, \ldots, x_{v}\right)=\frac{1}{\left|G_{v}\right|} \sum_{g \in G_{v}} x_{1}^{n_{1}(g)} x_{2}^{n_{2}(g)} \cdots x_{v}^{n_{v}(g)}, \tag{1.3}
\end{equation*}
$$

where $n_{i}(g)(1 \leqslant i \leqslant v)$ is the number of cycles of length i in the decomposition of g into disjoint cycles. Wei et al. [6] proved the following theorem.

Theorem 1.1. The number of equivalence classes of k-subsets of Z_{v} is

$$
\begin{equation*}
\frac{1}{k!}\left[\left(\frac{\mathrm{d}}{\mathrm{~d} x}\right)^{k} P_{G_{v}}\left(x+1, x^{2}+1, \ldots, x^{v}+1\right)\right]_{x=0}, \tag{1.4}
\end{equation*}
$$

and the number of equivalence classes of subsets of Z_{v} is

$$
\begin{equation*}
P_{G_{v}}(2,2, \ldots, 2) . \tag{1.5}
\end{equation*}
$$

According to this theorem, the problem of finding the number of equivalence classes of k-subsets (or subsets) of Z_{v} is reduced to finding the cycle index of the permutation group G_{v}. When v is a prime power p^{α}, Wei et al. [6] have found $P_{G_{p x}}\left(x_{1}, x_{2}, \ldots, x_{p^{\alpha}}\right)$ as in the following theorems.

Theorem 1.2. Let p be an odd prime and $\alpha \geqslant 1$. Then the cycle index of $G_{p^{*}}$ is

$$
\begin{align*}
& P_{G_{p^{2}}}\left(x_{1}, x_{2}, \ldots, x_{p^{v}}\right)=\frac{1}{p^{2 \alpha}-1}(p-1)\left\{\sum_{w=1}^{\alpha} p^{2(w-1)}(p-1) x_{p^{w}}^{p^{-w}}\right. \\
& +\sum_{w=0}^{\alpha-1} \sum_{l \mid p-1} p^{w+\delta(l)(\alpha-w)} \varphi\left(p_{l}^{w}\right) x_{1} x_{l}^{\left(p^{2-w-1}-1\right) / d} \\
& \left.\times\left(\prod_{u=0}^{w} x_{p} u_{l}\right)^{p^{x-w-1}(p-1) / l}\right\} \text {, } \tag{1.6}
\end{align*}
$$

where

$$
\delta(l)= \begin{cases}1 & \text { if } l>1, \\ 0 & \text { if } l=1 .\end{cases}
$$

Theorem 1.3. The cycle index of $G_{2^{*}}$ is

$$
\begin{align*}
& \frac{1}{2}\left(x_{1}^{2}+x_{2}\right) \quad \text { if } \alpha=1 \tag{1.7}\\
& \frac{1}{8}\left(x_{1}^{4}+2 x_{1}^{2} x_{2}+3 x_{2}^{2}+2 x_{4}\right) \quad \text { if } \alpha=2, \tag{1.8}\\
& \frac{1}{2^{2 \alpha-1}}\left\{2^{2(x-1)} x_{2^{\alpha}}+\sum_{w=1}^{\alpha-1}\left(2^{2(w-1)}+\varphi\left(2^{w-1}\right) 2^{\alpha-1}\right) x_{2^{w}}^{2^{\alpha-w}}\right. \\
& \quad+\sum_{w=0}^{\alpha-2} \varphi\left(2^{w}\right)\left(2^{w} x_{1}^{2^{\alpha-w}}+2^{\alpha-1} x_{1}^{2} x_{2}^{2^{\alpha-w-1}}-1\right) \\
& \left.\quad \times\left(\sum_{u=1}^{w} x_{2} u\right)^{2^{\alpha-w-1}}\right\} \quad \text { if } \alpha \geqslant 3 \tag{1.9}
\end{align*}
$$

In the present paper we will settle the general case when v has the factorization:

$$
\begin{equation*}
v=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}, \quad p_{i}^{\prime} \mathrm{s} \text { are distinct primes. } \tag{1.10}
\end{equation*}
$$

To this end, we first study in Section 2 the index of the direct product of permutation groups, which also has its own independent interest and use it to find the cycle index of G_{v}, and then give in Section 3 formulas for the number of equivalence classes of k-subsets of Z_{v} as well as for the number of equivalence classes of subsets of Z_{v}. Naturally, these numbers can be viewed as upper bounds, respectively, for the number of inequivalent (v, k, λ) cyclic difference sets (when $k(k-1)=\lambda(v-1))$ and for the number of inequivalent cyclic difference sets in Z_{v}, although they are too coarse.

2. Cycle index of direct product of permutation groups

Let H_{i} be a permutation group on a finite set S_{i} and $\left|S_{i}\right|=v_{i}(1 \leqslant i \leqslant r)$. Let the cycle index of H_{i} be

$$
\begin{equation*}
P_{H_{i}}\left(x_{1}, x_{2}, \ldots, x_{v_{i}}\right)=\frac{1}{\left|H_{i}\right|} \sum_{h_{i} \in H_{i}} \prod_{j=1}^{v_{i}} x_{j}^{n_{i j}\left(h_{i}\right)} \tag{2.1}
\end{equation*}
$$

Let $S=S_{1} \times S_{2} \times \cdots \times S_{r}$ be the Cartesian product of $S_{1}, S_{2}, \ldots, S_{r}$, and $H=H_{1} \times H_{2} \times \cdots \times H_{r}$ the direct product of $H_{1}, H_{2}, \ldots, H_{r}$. For an element $a=$ $\left(a_{1}, a_{2}, \ldots, a_{r}\right)$ of S and an element $h=\left(h_{1}, h_{2}, \ldots, h_{r}\right)$ of H, we define the action of h on a by

$$
\begin{equation*}
h(a)=\left(h_{1}, h_{2}, \ldots, h_{r}\right)\left(a_{1}, a_{2}, \ldots, a_{r}\right)=\left(h_{1}\left(a_{1}\right), h_{2}\left(a_{2}\right), \ldots, h_{r}\left(a_{r}\right)\right) \tag{2.2}
\end{equation*}
$$

Evidently, H is a permutation group on S. Denote by $C_{h}(a)$ the length of the cycle containing the element $a \in S$ in the decomposition of the permutation h into disjoint cycles, and by $C_{h_{i}}\left(a_{i}\right)$ the length of the cycle containing the element $a_{i} \in S_{i}$ in the decomposition of the permutation h_{i} into disjoint cycles. Then we can prove the following relation between $C_{h}(a)$ and $C_{h_{i}}\left(a_{i}\right)(1 \leqslant i \leqslant r)$, where $a=\left(a_{1}, a_{2}, \ldots, a_{r}\right)$.

Lemma 2.1. For any element $a=\left(a_{1}, a_{2}, \ldots, a_{r}\right) \in S$, we have

$$
\begin{equation*}
C_{h}(a)=\left[C_{h_{1}}\left(a_{1}\right), C_{h_{2}}\left(a_{2}\right), \ldots, C_{h_{r}}\left(a_{r}\right)\right], \tag{2.3}
\end{equation*}
$$

where $\left[C_{h_{1}}\left(a_{1}\right), C_{h_{2}}\left(a_{2}\right), \ldots, C_{h_{r}}\left(a_{r}\right)\right]$ denotes the lcm of $C_{h_{1}}\left(a_{1}\right), C_{h_{2}}\left(a_{2}\right), \ldots, C_{h_{r}}\left(a_{r}\right)$.

Proof. From $h^{c_{h}(a)}(a)=a$, we have

$$
\left(h_{1}^{c_{1}(a)}\left(a_{1}\right), h_{2}^{c_{h}(a)}\left(a_{2}\right), \ldots, h_{r}^{c_{n}(a)}\left(a_{r}\right)\right)=\left(a_{1}, a_{2}, \ldots, a_{r}\right)
$$

i.e.

$$
h_{i}^{c_{i}(a)}\left(a_{i}\right)=a_{i} \quad(1 \leqslant i \leqslant r) .
$$

Thus, $C_{h_{i}}\left(a_{i}\right) \mid C_{h}(a)(1 \leqslant i \leqslant r)$, and then

$$
\begin{equation*}
\left[C_{h_{1}}\left(a_{1}\right), C_{h_{2}}\left(a_{2}\right), \ldots, C_{h_{r}}\left(a_{r}\right)\right] \mid C_{h}(a) . \tag{2.4}
\end{equation*}
$$

Write $m=\left[C_{h_{1}}\left(a_{1}\right), C_{h_{2}}\left(a_{2}\right), \ldots, C_{h_{r}}\left(a_{r}\right)\right]$, and $l_{i}=m / C_{h_{i}}\left(a_{i}\right)(1 \leqslant i \leqslant r)$. Then

$$
\begin{equation*}
h^{m}(a)=\left(h_{1}^{c_{1},\left(a_{1}\right) l_{1}}\left(a_{1}\right), h_{2}^{c_{n_{2}}\left(a_{2}\right) l_{2}}\left(a_{2}\right), \ldots, h_{r}^{c_{1}\left(a_{r}\right) l_{r}}\left(a_{r}\right)\right) . \tag{2.5}
\end{equation*}
$$

From this and

$$
h_{i}^{c_{i},\left(a_{i}\right) l_{i}}\left(a_{i}\right)=\underbrace{c_{h_{h_{i}}\left(a_{i}\right)} \ldots h_{i}^{c_{i}\left(a_{i}\right)}}_{i_{i}}\left(a_{i}\right)=a_{i} \quad(1 \leqslant i \leqslant r)
$$

we get

$$
h^{m}(a)=\left(a_{1}, a_{2}, \ldots, a_{r}\right)=a .
$$

Therefore,

$$
\begin{equation*}
C_{h}(a) \mid m . \tag{2.6}
\end{equation*}
$$

Combining (2.4) and (2.6), we prove the theorem.

We introduce a special kind of product as follows.

Definition 2.2. Let $f\left(x_{1}, x_{2}, \ldots, x_{u}\right)=\sum a_{i_{1} i_{2} \ldots i_{u}} x_{1}^{i_{1}} x_{2}^{i_{2}} \ldots x_{u}^{i_{u}}$ and $g\left(x_{1}, x_{2}, \ldots, x_{v}\right)=$ $\sum b_{j_{1} j_{2} \ldots j_{v}} x_{1}^{j_{1}} x_{2}^{j_{2}} \ldots x_{v}^{j_{v}}$ be two polynomials. The $※$-product of $f\left(x_{1}, x_{2}, \ldots, x_{u}\right)$ and
$g\left(x_{1}, x_{2}, \ldots, x_{v}\right)$, denoted by $f\left(x_{1}, x_{2}, \ldots, x_{u}\right) \not \approx g\left(x_{1}, x_{2}, \ldots, x_{v}\right)$, is defined to be

$$
f\left(x_{1}, x_{2}, \ldots, x_{u}\right) \nVdash g\left(x_{1}, x_{2}, \ldots, x_{v}\right)=\sum a_{i_{1} i_{2} \cdots i_{u}} b_{j_{1} j_{2} \cdots j_{v}}
$$

$$
\begin{equation*}
\times \prod_{\substack{1 \leqslant l l u \\ 1 \leqslant m \leqslant v}}\left(x_{l}^{i_{1}} ※ x_{m}^{j_{m}}\right) \tag{2.7}
\end{equation*}
$$

where

$$
\begin{equation*}
x_{l}^{i_{l}} ※ x_{m}^{j_{m}}=x_{[l, m]}^{l i_{1} j_{m} /[l, m]} \tag{2.8}
\end{equation*}
$$

Some useful properties of $※$-multiplication are listed in the following lamma.

Lemma 2.3. (a) The $※$-multiplication is commutative:

$$
f\left(x_{1}, x_{2}, \ldots, x_{u}\right) \nVdash g\left(x_{1}, x_{2}, \ldots, x_{v}\right)=g\left(x_{1}, x_{2}, \ldots, x_{v}\right) ※ f\left(x_{1}, x_{2}, \ldots, x_{u}\right)
$$

(b) The ※-multiplication is associative:

$$
\begin{aligned}
& \left(f\left(x_{1}, x_{2}, \ldots, x_{u}\right) ※ g\left(x_{1}, x_{2}, \ldots, x_{v}\right)\right) ※ q\left(x_{1}, x_{2}, \ldots, x_{w}\right) \\
& \quad=f\left(x_{1}, x_{2}, \ldots, x_{u}\right) ※\left(g\left(x_{1}, x_{2}, \ldots, x_{v}\right) ※ q\left(x_{1}, x_{2}, \ldots, x_{w}\right)\right)
\end{aligned}
$$

and in general, the $※$-product of r polynomials is the same no matter how to associate the factors, so we can use the symbols:

$$
\begin{aligned}
\stackrel{T}{\underset{i=1}{※}} f_{i}\left(x_{1}, x_{2}, \ldots, x_{v_{i}}\right)= & f_{1}\left(x_{1}, x_{2}, \ldots, x_{v_{1}}\right) ※ f_{2}\left(x_{1}, x_{2}, \ldots, x_{v_{2}}\right) \\
& ※ \cdots \not f_{r}\left(x_{1}, x_{2}, \ldots, x_{v_{r}}\right)
\end{aligned}
$$

Moreover,
(c) $\quad\left(x_{i}^{n_{i}}\right)^{m} ※\left(x_{j}^{n_{i}}\right)^{l}=\left(x_{i}^{n_{i}} ※ x_{j}^{n_{i}}\right)^{m l}$.
(d) $\underset{j=1}{\underset{\gtrless}{※}} P_{H_{j}}\left(x_{1}, x_{2}, \ldots, x_{v_{j}}\right)=\frac{1}{\prod_{j=1}^{r}\left|H_{j}\right|} \sum_{\left(h_{1}, h_{2}, \ldots, h_{r}\right) \in H_{1} \times H_{2} \times \ldots \times H_{r}}$

$$
\begin{equation*}
\times \prod_{u \geqslant 1} x_{u}^{\left.1 / u \sum_{\left[u_{1}, u_{2}\right.}, \ldots, u_{r}\right]=u\left(1 \leqslant u_{j} \leqslant v_{j}\right) \prod_{j=1}^{r} u_{j} n_{j u}\left(h_{j}\right)} \tag{2.10}
\end{equation*}
$$

Proof. (a) follows from (2.7), for its right-hand side is independent of the order of $x_{l}^{l_{l}}$ and $x_{m}^{J_{m}}$. (b) follows from

$$
\begin{aligned}
& \left(x_{i}^{n_{i}} \not \not x_{j}^{n_{j}}\right) \nVdash x_{m}^{n_{m}}=x_{[i, j]}^{i n_{j} n_{n} /[i, j]} \nVdash x_{m}^{n_{m}}=x_{[[i, j], m]}^{i n_{j} n_{2} m n_{m} /[[i, j], m]} \\
& \quad=x_{[i,[j, m]]}^{i n_{i} n_{j} m n_{m} /[i,[j, m]]}=x_{i}^{n_{i}} ※\left(x_{j}^{n_{j}} \nVdash x_{m}^{n_{m}}\right)
\end{aligned}
$$

Based on this we get (2.9) by mathematical induction. The verification of (c) is straightforward. We now prove (d):

$$
\begin{aligned}
& h_{r} \in H_{r} \quad 1 \leqslant u_{r} \leqslant v_{r} \\
& =\frac{1}{\prod_{i=1}^{r}\left|H_{i}\right|} \sum_{\substack{h_{1} \in H_{1} \\
h_{2} \in H_{2} \\
h_{r} \in \boldsymbol{H}_{r} \\
h_{r} \leqslant u_{r}}} \prod_{\substack{1 \leqslant u_{1} \leqslant u_{1} \\
1 \leqslant u_{r} \leqslant v_{2}}} x_{\left[u_{1}, u_{r}, u_{2}, \ldots, u_{r}\right]}^{\left.u_{1} n_{1},\left(h_{1}\right) u_{2} n_{2} u_{2}\left(h_{2}\right) \ldots u_{r} n_{r_{r}}\left(h_{r}\right)\right)\left[u_{1}, u_{2}, \ldots, u_{r}\right]} \\
& =\frac{1}{\prod_{i=1}^{r}\left|H_{i}\right|} \sum_{\substack{\left(h_{1}, h_{2}, \ldots, h_{r}\right) \\
\in H_{1} \times H_{2} \times \ldots \times H_{r}}} \prod_{\substack{u \geqslant 1}} x_{u}^{1 / u \sum_{\left[u_{1}, u_{2}, \ldots, u_{r}\right]=u\left(1 \leqslant u_{j} \leqslant v_{j}\right)} \prod_{j=1}^{r} u_{j} n_{j u_{j}}\left(h_{j}\right)} .
\end{aligned}
$$

This proves the lemma.

We are now in a position to prove the main result of this section.

Theorem 2.4. The cycle index of the permutation group $H=H_{1} \times H_{2} \times \cdots \times X_{r}$ is

$$
P_{H_{1} \times H_{2} \times \ldots \times H_{r}}\left(x_{1}, x_{2}, \ldots, x_{v_{1} v_{2} \ldots v_{r}}\right)=\underset{i=1}{\underset{\gtrless}{\gtrless}} P_{H_{i}}\left(x_{1}, x_{2}, \ldots, x_{v_{i}}\right) .
$$

Proof. Let $h=\left(h_{1}, h_{2}, \ldots, h_{r}\right)$ be a given element of $H_{1} \times H_{2} \times \cdots \times H_{r}$ and $a=$ $\left(a_{1}, a_{2}, \ldots, a_{r}\right)$ a given element of $S_{1} \times S_{2} \times \cdots \times S_{r}$. Let a_{i} be in a cycle of length l_{i} of the decomposition of the permutation h_{i} into disjoint cycles ($1 \leqslant i \leqslant r$). By Lemma 2.1, a is in a cycle of length $\left[l_{1}, l_{2}, \ldots, l_{r}\right]$ of the decomposition of the permutation h into disjoint cycles. Since the cycle indicator of h_{i} is

$$
x_{1}^{n_{i}\left(h_{i}\right)} x_{2}^{n_{i 2}\left(h_{i}\right)} \cdots x_{v_{i}}^{n_{i}\left(h_{i}\right)} \quad(1 \leqslant i \leqslant r)
$$

there are $\prod_{i=1}^{r}\left(n_{i l_{i}}\left(h_{i}\right) l_{i}\right)$ elements of S that are in one of the cycles of length $\left[l_{1}, l_{2}, \ldots, l_{r}\right]$. Thus, there are $\left[\prod_{i=1}^{r}\left(l_{i} n_{i_{i}}\left(h_{i}\right)\right) /\left[l_{1}, l_{2}, \ldots, l_{r}\right]\right.$ cycles of length $\left[l_{1}, l_{2}, \ldots, l_{r}\right]$ in the decomposition of h into disjoint cycles. Therefore, the cycle indicator of $h=\left(h_{1}, h_{2}, \ldots, h_{r}\right)$ is

$$
\prod_{\substack{1 \leqslant l_{1} \leqslant \nu_{1} \\ 1 \leqslant l_{2} \leqslant v_{2} \\ 1 \leqslant l_{r} \leqslant v_{r}}} x_{\left[l_{1}, l_{2}, \ldots, l_{2}, l_{r}\right.}^{l_{1} n_{1}\left(h_{1}\right) l_{2} n_{2}\left(h_{2}\right) \cdots l_{r} n_{r}\left(h_{r}\right) /\left[l_{1}, l_{2}, \ldots, l_{r}\right]} .
$$

Hence,

$$
\begin{aligned}
& P_{H_{1} \times H_{2} \times \cdots \times H_{r}}\left(x_{1}, x_{2}, \ldots, x_{v_{1} v_{2} \cdots v_{r}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\stackrel{r}{\underset{i=1}{※} P_{H_{i}}\left(x_{1}, x_{2}, \ldots, x_{v_{i}}\right) .}
\end{aligned}
$$

This proves the theorem.

3. Enumeration of equivalence classes

In this section we will first find the cycle index of the permutation group G_{v}, and then use it to obtain an enumeration formula for the number of equivalence classes of subsets (or k-subsets) of Z_{v}.

Let v be a positive integer and have the factorization (1.10). From number theory, there are integers $z_{1}, z_{2}, \ldots, z_{r}$ such that

$$
\sum_{i=1}^{r} z_{i} \prod_{\substack{j \neq i \\ 1 \leqslant j \leqslant r}} p_{j}^{x_{j}}=1
$$

For any $t \in Z_{v}$, set

$$
t_{i} \equiv t z_{i} \prod_{\substack{j \neq i \\ 1 \leqslant j \leqslant r}} p_{j}^{\alpha_{j}}\left(\bmod p_{i}^{\alpha_{i}}\right) \quad(1 \leqslant i \leqslant r) .
$$

Then the map β :

$$
\begin{equation*}
\beta(t)=\left(t_{1}, t_{2}, \ldots, t_{r}\right) \tag{3.1}
\end{equation*}
$$

is an isomorphism from Z_{v} to $\oplus_{i=1}^{r} Z_{p_{i}^{z_{i}}}$. And it is easy to see that $\operatorname{gcd}(t, v)=1$ if and only if $\operatorname{gcd}\left(t_{i}, p_{i}\right)=1(1 \leqslant i \leqslant r)$.

Write

$$
\begin{equation*}
G_{p_{i}^{a_{i}}}=\left\{\sigma_{i}\left(t_{i}, s_{i}\right) \mid\left(t_{i}, s_{i}\right) \in T_{p_{i}^{x_{i}}}\right\} \quad(1 \leqslant i \leqslant r), \tag{3.2}
\end{equation*}
$$

where $\sigma_{i}\left(t_{i}, s_{i}\right)$ means the permutation on $Z_{p_{i}^{x_{i}}}$ such that for $a_{i} \in Z_{p_{i}^{x_{i}}}, \sigma_{i}\left(t_{i}, s_{i}\right) a_{i}=$ $\left\langle t_{i} a_{i}+s_{i}\right\rangle_{i}$, where $\left\langle t_{i} a_{i}+s_{i}\right\rangle_{i}$ is the smallest nonnegative residue of $t_{i} a_{i}+s_{i}$ modulo $p_{i}^{\alpha_{i}}$ and is regarded as an element of $G_{p_{i}^{\alpha_{i}}}(1 \leqslant i \leqslant r)$.

We now prove the following theorem.

Theorem 3.1. G_{v} is isomorphic to the direct product of $G_{p_{i}^{z i t}}(1 \leqslant i \leqslant r)$:

$$
\begin{equation*}
G_{\nu} \cong \bigoplus_{i=1}^{r} G_{p_{i}^{z_{i}}} \tag{3.3}
\end{equation*}
$$

and then

Proof. Let (t, s) be a given element of T_{v}, β be as defined in (3.1), $\beta(t)=\left(t_{1}, t_{2}, \ldots, t_{r}\right)$, and $\beta(s)=\left(s_{1}, s_{2}, \ldots, s_{r}\right)$. Then we have $\operatorname{gcd}\left(t_{i}, p_{i}\right)=1(1 \leqslant i \leqslant r)$, so $\left(t_{i}, s_{i}\right) \in T_{p_{i}^{x_{i}}}(1 \leqslant i \leqslant r)$.

We can induce from $\sigma(t, s)$ a permutation $\bar{\sigma}\left(\left(t_{1}, t_{2}, \ldots, t_{r}\right),\left(s_{1}, s_{2}, \ldots, s_{r}\right)\right.$ on $\oplus_{i=1}^{r}$ $Z_{p_{i}^{x_{i}}}$ as follows:

$$
\begin{align*}
& \bar{\sigma}\left(\left(t_{1}, t_{2}, \ldots, t_{r}\right),\left(s_{1}, s_{2}, \ldots, s_{r}\right)\right)\left(a_{1}, a_{2}, \ldots, a_{r}\right) \\
& \quad=\left(\left\langle t_{1} a_{1}+s_{1}\right\rangle_{1},\left\langle t_{2} a_{2}+s_{2}\right\rangle_{2}, \ldots,\left\langle t_{r} a_{r}+s_{r}\right\rangle_{r}\right) \tag{3.5}
\end{align*}
$$

where $\left(a_{1}, a_{2}, \ldots, a_{r}\right)$ is any element of $\oplus_{i=1}^{r} Z_{p_{i}^{z_{i}}}$. Write

$$
\bar{G}_{v}=\left\{\bar{\sigma}\left(\left(t_{1}, t_{2}, \ldots, t_{r}\right),\left(s_{1}, s_{2}, \ldots, s_{r}\right)\right) \mid\left(t_{i}, s_{i}\right) \in T_{p_{i}^{s_{i}}}(1 \leqslant i \leqslant r)\right\}
$$

Then it is easily seen that

$$
\begin{equation*}
G_{v} \cong \bar{G}_{v} \tag{3.6}
\end{equation*}
$$

On the other hand, for $\sigma_{i}\left(t_{i}, s_{i}\right) \in G_{p_{i}^{z_{i}}}$ and $a_{i} \in Z_{p_{i}^{2_{i}^{2}}}$,

$$
\sigma_{i}\left(t_{i}, s_{i}\right) a_{i}=\left\langle t_{i} a_{i}+s_{i}\right\rangle_{i} \quad(1 \leqslant i \leqslant r)
$$

Combining this and (3.5), we have

$$
\bar{\sigma}\left(\left(t_{1}, t_{2}, \ldots, t_{r}\right),\left(s_{1}, s_{2}, \ldots, s_{r}\right)\right)=\left(\sigma_{1}\left(t_{1}, s_{1}\right), \sigma_{2}\left(t_{2}, s_{2}\right), \ldots, \sigma_{r}\left(t_{r}, s_{r}\right)\right)
$$

where $\left(\sigma_{1}\left(t_{1}, s_{1}\right), \sigma_{2}\left(t_{2}, s_{2}\right), \ldots, \sigma_{r}\left(t_{r}, s_{r}\right)\right)$ means such a permutation on $\oplus_{i=1}^{r} Z_{p_{i}^{x}}$ that for each $\left(a_{1}, a_{2}, \ldots, a_{r}\right) \in\left(\oplus_{i=1}^{r} Z_{p_{i}^{2}}\right.$,

$$
\begin{aligned}
& \left(\sigma_{1}\left(t_{1}, s_{1}\right), \sigma_{2}\left(t_{2}, s_{2}\right), \ldots, \sigma_{r}\left(t_{r}, s_{r}\right)\right)\left(a_{1}, a_{2}, \ldots, a_{r}\right) \\
& \quad=\left(\sigma_{1}\left(t_{1}, s_{1}\right) a_{1}, \sigma_{2}\left(t_{2}, s_{2}\right), \ldots, \sigma_{r}\left(t_{r}, s_{r}\right) a_{r}\right)
\end{aligned}
$$

Clearly, $\bar{\sigma}\left(\left(t_{1}, t_{2}, \ldots, t_{r}\right),\left(s_{1}, s_{2}, \ldots, s_{r}\right)\right)$ and $\left(\sigma_{1}\left(t_{1}, s_{1}\right), \sigma_{2}\left(t_{2}, s_{2}\right), \ldots, \sigma_{r}\left(t_{r}, s_{r}\right)\right)$ are uniquely determined from each other.

Moreover, if also $\left(t^{\prime}, s^{\prime}\right) \in T_{v}, \beta\left(t^{\prime}\right)=\left(t_{1}^{\prime}, t_{2}^{\prime}, \ldots, t_{r}^{\prime}\right)$, and $\beta\left(s^{\prime}\right)=\left(s_{1}^{\prime}, s_{2}^{\prime}, \ldots, s_{r}^{\prime}\right)$, then for any $\left(a_{1}, a_{2}, \ldots, a_{r}\right) \in \Psi_{i=1}^{r} Z_{p_{i}^{z_{i}}}$

$$
\begin{aligned}
& \bar{\sigma}\left(\left(t_{1}^{\prime}, t_{2}^{\prime}, \ldots, t_{r}^{\prime}\right),\left(s_{1}^{\prime}, s_{2}^{\prime}, \ldots, s_{r}^{\prime}\right)\right) \bar{\sigma}\left(\left(t_{1}, t_{2}, \ldots, t_{r}\right),\left(s_{1}, s_{2}, \ldots, s_{r}\right)\right)\left(a_{1}, a_{2}, \ldots, a_{r}\right) \\
& \quad=\bar{\sigma}\left(\left(t_{1}^{\prime}, t_{2}^{\prime}, \ldots, t_{r}^{\prime}\right),\left(s_{1}^{\prime}, s_{2}^{\prime}, \ldots, s_{r}^{\prime}\right)\right)\left(\sigma_{1}\left(t_{1}, s_{1}\right) a_{1}, \sigma_{2}\left(t_{2}, s_{2}\right) a_{2}, \ldots, \sigma_{r}\left(t_{r}, s_{r}\right) a_{r}\right) \\
& \quad=\left(\sigma_{1}\left(t_{1}^{\prime}, s_{1}^{\prime}\right) \sigma_{1}\left(t_{1}, s_{1}\right) a_{1}, \sigma_{2}\left(t_{2}^{\prime}, s_{2}^{\prime}\right) \sigma_{2}\left(t_{2}, s_{2}\right) a_{2}, \ldots, \sigma_{r}\left(t_{r}^{\prime}, s_{r}^{\prime}\right) \sigma_{r}\left(t_{r}, s_{r}\right) a_{r}\right)
\end{aligned}
$$

This implies that

$$
\begin{aligned}
& \bar{\sigma}\left(\left(t_{1}^{\prime}, t_{2}^{\prime}, \ldots, t_{r}^{\prime}\right),\left(s_{1}^{\prime}, s_{2}^{\prime}, \ldots, s_{r}^{\prime}\right)\right) \bar{\sigma}\left(\left(t_{1}, t_{2}, \ldots, t_{r}\right),\left(s_{1}, s_{2}, \ldots, s_{r}\right)\right) \\
& \quad=\left(\sigma_{1}\left(t_{1}^{\prime}, s_{1}^{\prime}\right) \sigma_{1}\left(t_{1}, s_{1}\right), \sigma_{2}\left(t_{2}^{\prime}, s_{2}^{\prime}\right) \sigma_{2}\left(t_{2}, s_{2}\right), \ldots, \sigma_{r}\left(t_{r}^{\prime}, s_{r}^{\prime}\right) \sigma_{r}\left(t_{r}, s_{r}\right)\right)
\end{aligned}
$$

Thus, we have proved

$$
\begin{equation*}
\bar{G}_{v} \cong \bigoplus_{i=1}^{r} G_{p_{i}^{z i}} . \tag{3.7}
\end{equation*}
$$

Combining (3.6) and (3.7), we get (3.3). Since isomorphic groups have the same cycle index, we obtain (3.4). This completes the proof.

From Theorems 1.1 and 3.1, we immediately obtain the following theorem.

Theorem 3.2. The number of equivalence classes of k-subsets of Z_{v} is

$$
\frac{1}{k!}\left[\left(\frac{\mathrm{d}}{\mathrm{dx}}\right)^{k} \underset{i=1}{\underset{~}{※}} P_{G_{p_{i}}}\left(x+1, x^{2}+1, \ldots, x^{p_{i}^{x_{i}}}+1\right)\right]_{x=0}
$$

where $P_{G_{p_{i}}}$ are given in (1.6)-(1.9). And the number of equivalence classes of all subsets of Z_{v} is

$$
\left[{ }_{i=1}^{\underset{i}{\underset{i}{x}}} P_{G_{p_{i}^{\alpha_{i}}}}\left(x+1, x^{2}+1, \ldots, x^{p_{i}^{\alpha_{i}}}+1\right)\right]_{x=1} .
$$

Applying Theorem 3.2 to the number of inequivalent cyclic difference sets, we have the following theorem.

Theorem 3.3. Let v, k, λ be positive integers and $\lambda(v-1)=k(k-1)$. Then the number of inequivalent (v, k, λ) cyclic difference sets is less than or equal to

$$
\frac{1}{k!}\left[\left(\frac{\mathrm{d}}{\mathrm{~d} x}\right)^{k} \underset{i=1}{\underset{\gtrless}{※}} P_{G_{p_{i}}}\left(x+1, x^{2}+1, \ldots, x^{p_{i}^{z_{i}}}+1\right)\right]_{x=0}
$$

and the number of all inequivalent nontrivial cyclic difference sets in Z_{v} is less than or equal to

$$
\left[\underset{i=1}{\underset{~}{※}} P_{G_{p_{i}^{x_{i}}}}\left(x+1, x^{2}+1, \ldots, x^{p_{i}^{x_{i}}}+1\right)\right]_{x=1}-2(v+1) .
$$

Of course, the upper bounds, in general, are very coarse.

References

[1] L.D. Baumert, Cyclic Difference Sets, Lecture Notes in Mathematics, Vol. 182 (Springer, Berlin, 1972).
[2] M. Hall Jr, A survey of difference sets, Proc. Amer. Math. Soc. 7 (1956) 975-986.
[3] C. Ko and W.-D. Wei, Combinatorial Theory, Vol. 1 (Science Press, Peking, 1981, 1984).
[4] G. Pólya, Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und Chemische Verbindungen, Acta Math. 68 (1937) 145-254.
[5] W.-D. Wei, Combinatorial Theory, Vol. 2 (Science Press, Peking, 1987).
[6] W.-D. Wei, X.-H. Gao and B.-F. Yang, Equivalence relation on the set of subsets of Z_{v} and enumeration of the equivalence classes (Research Announcement), Adv. Math. 17 (1988) 326-327.

