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Abstract 

Let u be a positive integer and Z, the residue class ring modulo U. Two subsets D1 and D, of Z, are 

said to be equivalent if there exist t,seZ, with gcd(t, v)= 1 such that D, = tD, +s. We are interested 

in the number of equivalence classes of k-subsets of 2, and the number of equivalence classes of 
subsets of Z,. We first find the cycle index of the direct product of permutation groups, and then use 

it to obtain the numbers mentioned above which can be viewed as upper bounds, respectively, for the 
number of inequivalent (v. k, I) cyclic difference sets (when k(k- l)=l(v- 1)) and for the number of 

inequivalent cyclic difference sets in Z,. 

1. Introduction 

Let v be a positive integer and Z, the residue class ring modulo v. Motivated 

by the concept of equivalence of cyclic difference sets (cf. [1,2 or SJ), Wei et al. [6] 

have introduced a similar equivalence relation among the subsets of Z,, and studied 

the number of equivalence classes. Two subsets D, and D2 of Z, are said to be 

equivalent, denoted by D, -D,, if there exist t,s~Z, with gcd(t, v)= 1 such that 

D,=tD,+s. 

Obviously, the relation - is an equivalence relation, under which the set of subsets 

of Z, are partitioned into disjoint equivalence classes, and the subsets in one equiva- 

lence class have the same cardinality. 

Let 

T,={(t,s)It,s~Z,, gcd(t,v)=l). (1.1) 

0012-365X/93/$06.00 0 1993-Elsevier Science Publishers B.V. All rights reserved 



180 W.-D. Wei, J.-I’. Xu 

Then [r,l =cp(v)u, where cp(v) is the Euler’s phi-function. One can associate each 

element (t, S)E T with the following permutation on Z,: 

a(t, s) = 
0 l...d...v_l 

s t+s..* td+s... t(u- l)+s 

Let G, = {~(t, s) 1 (t, S)E T,}. For o(t, s), ~(t’, s’)EG,, we define 

(o(t, s) a(~‘, s’))d = o(t, s)@(t), s’)d), dcZ,. 

Then 

o(t, s) CJ(~‘, s’)= a(~‘, ts’ + s)EG”, (1.2) 

and G, is a permutation group on Z,. Denote the cycle index of G, (cf. [3] or [4]) by 

PG”(xlJ2,...>x”)=L c IGlJJ geC, 

x;l(g) xp) . . . ,Y$s), (1.3) 

where n i(g) (1 <i < II) is the number of cycles of length i in the decomposition of g into 

disjoint cycles. Wei et al. [6] proved the following theorem. 

Theorem 1.1. The number of equivalence classes of k-subsets of Z, is 

1 

k! K ) 
$ kP,“(x+l,x2+1 )...) x”+l) 1 ) x=0 (1.4) 

and the number of equivalence classes of subsets of Z, is 

P&,(2,2, . . . ,a. (1.5) 

According to this theorem, the problem of finding the number of equivalence classes 

of k-subsets (or subsets) of Z, is reduced to finding the cycle index of the permutation 

group G,. When u is a prime power pa, Wei et al. [6] have found Pc,,(x,, x2, . . . , xp.) as 

in the following theorems. 

Theorem 1.2. Let p be an odd prime and a 3 1. Then the cycle index of G,z is 

1 
Q,,.(XI~XZ, . . ..xpz)= 

P 
2”-l(p_l) P2’“-“(P-1)x$-” 

a-1 

+ c c pw+ww~) (p(p~)xlxy~-‘-l)!’ 

w=o lip-1 

x (0 xpu,)pa-w-““-“i’), (1.6) 

where 

6(l) = 
i 

1 if l>l: 

0 if l=l. 
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Theorem 1.3. The cycle index of G2a is 

+(x:+x2) if x=1, 

~(x’:+2x:xz+3x:+2x,) ij” a=2, 

1 

{ 

a-1 

~ 22(3-1)x2.+ 
22a- 1 c 

(22(W-l)+~(2”-l)2a-l)x~~~~ 

w=l 

a-2 

+ c (p(2”)(2”x~“‘~+2”-‘x:X~u-w-1-l) 
w=o 

x(Z *q-} if cc33. 

(1.7) 

(1.8) 

(1.9) 

In the present paper we will settle the general case when v has the factorization: 

v=py'py . ..py. pis are distinct primes. (1.10) 

To this end, we first study in Section 2 the index of the direct product of permutation 

groups, which also has its own independent interest and use it to find the cycle 

index of G,, and then give in Section 3 formulas for the number of equivalence 

classes of k-subsets of Z, as well as for the number of equivalence classes of subsets 

of Z,. Naturally, these numbers can be viewed as upper bounds, respectively, for 

the number of inequivalent (v, k, A) cyclic difference sets (when k (k - 1) = A (U - 1)) and 

for the number of inequivalent cyclic difference sets in Z,, although they are too 

coarse. 

2. Cycle index of direct product of permutation groups 

Let Hi be a permutation group on a finite set Si and ISi ( = Ui (1 <i < u). Let the cycle 

index of Hi be 

1 
Vi 

pII~(~l,x2,...,x”i)=-- 

IHil hbEH, ,=I ‘j”” 
Cl-I 

(hi ) 

’ 
(2.1) 

Let S=S,xS2x...xS, be the Cartesian product of S1, S2, . . . ,S,, and 

H = HI x H, x . . . x H, the direct product of HI, HZ, . . . , H,. For an element a= 

(a1,a2, . . . ,a,) of S and an element h=(hl, h2, . . . , h,) of H, we define the action of 

h on a by 



182 W.-D. Wei, J.-Y. Xu 

Evidently, H is a permutation group on S. Denote by C,(a) the length of the cycle 

containing the element agS in the decomposition of the permutation h into disjoint 

cycles, and by C,,(aJ the length of the cycle containing the element UieSi in the 

decomposition of the permutation hi into disjoint cycles. Then we can prove the 

following relation between C,(u) and C,~(Ui) (1 <i<r), where u=(aI,u2, . . . ,a,). 

Lemma 2.1. For any element u=(u,,u2, . . . ,a,)~$ we haue 

C,@)= CCh,(Ul)> Ch2(d ... , Chr@b)l, (2.3) 

where [C,,(u,), Ch2(a2), . . . , G,.(a,)l denotes the lcm of ChI(ud, Ch2(a2), . . . , Chp(u,). 

Proof. From hch@)(a) = a, we have 

i.e. 

(h?(“)(q), h’,“‘“‘(aJ ) . . . ) hf”(“)(u,)) = (al, u2, . . . ) a,), 

hfh’L1’(ui)=ui (1 Bi<r). 

Thus, Ch,(ai) 1 C,(a) (1 d i < r), and then 

[Ch,(ud Ch,(%), *.. > Ch,(dl 1 c,(a). 

Write m=[Ch,(al),C,,l(~z), . . . , Ch,(a,)], and /i = m/C,,(&) (1 d id r). Then 

hm(u)=(h~l(al)f’(ul), h~@Z)‘2(uZ), . . . , hf”@r”r(a,)). 

From this and 

we get 

h”(a)=(u,,az, . . . ,a,)=~. 

Therefore, 

Chb) 1 m. Q-6) 

Combining (2.4) and (2.6), we prove the theorem. 0 

We introduce a special kind of product as follows. 

(2.4) 

(2.5) 

Definition 2.2. Let f(xr,xz ,... ~~J=~ai~i~.,.i,~L;Lx~ . ..x$ and g(xr,xz, . . . . x,)= 

Cbj,jZ...jvXgX$ “* X+ be two polynomials. The x-product of f(xr, x2, . . . ,x,) and 
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g(xl,x2~ *.., xv), denoted by f(xI,xz, . . . ,x,) .X g(xl,xz, . . . ,x,), is defined to be 

where 

x ,C<. (4’ x xi-), (2.7) 
. . 

l<mQu 

(2.8) 

Some useful properties of ~-multiplication are listed in the following lemma. 

Lemma 2.3. (a) The ~-multiplication is commutative: 

f(x1,xz, ... , ~,)~gg(x~,x~,~~.,X”)=~(x~,xz,...,x”)~~f(x~,xz,...,x”). 

(b) The x-multiplication is associative: 

and in general, the x -product of Y polynomials is the same no matter how to associate the 
factors, so we can use the symbols: 

G .L:(x,,x,, . . . ,x”i)=fi(x1,x2,~~~,x”l)~~f2(x1,x2,~~~,x”,) 
i=l 

Moreover, 

x ... x 5(X1,X2, . . . ,X”,). 

i,n,i,n, i,n,/[il,i2, ,i,] x q=xlilri2,,,, i, 
j=l 

I , 

(d) i PHj(X1,X2, . . ..xoj)= 
1 

j=l n;=l IH.1 c 
J (h,,h2 ,.._, h,)~H~xH~x...xH, 

X 
n 

l/“C[,,,“z,...,u~]=u(l$ujS”j)n~=l~~~iu,(hj). Xl4 
UP.1 

~2.9) 

(2.10) 

Proof. (a) follows from (2.7), for its right-hand side is independent of the order of 
xf’ and x’,-* (b) follows from 
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Based on this we get (2.9) by mathematical induction. The verification of (c) is 

straightforward. We now prove (d): 

1 
=-- 

rIl=, T 

1 
=- 

rIr=, T 

This proves the lemma. 0 

We are now in a position to prove the main result of this section. 

Theorem 2.4. The cycle index of the permutation group H = Hl x H2 x ... x X, is 

I 
P H,xH1X_.XH,(x1,x2, ...> xvIv2...“,)= SC PH,(.~l~~Z,~~~>X”,). 

i=l 

Proof. Let h=(hl,hZ, . . . , h,) be a given element of H, x Hz x ... x H, and a= 

(al, a,, . ,a,) a given element of Sr x Sz x ... x S,. Let ai be in a cycle of length li of the 

decomposition of the permutation hi into disjoint cycles (1 < i < r). By Lemma 2.1, a is 

in a cycle of length [II, 12, . . . ,/,I of the decomposition of the permutation h into 

disjoint cycles. Since the cycle indicator of hi is 

Xy,rWX;dh.) . . . Xnm(hi) 
“I 

(1 ~i,<~) 

there are n;=, (nil,(hi)li) elements of S that are in one of the cycles of length 

[11, 1*, . . , l,]. Thus, there are nr= 1 (Iinil,(hi))/[l,, l2,. . . , I,] cycles of length C/r, 12, . . . ,L.l 
in the decomposition of h into disjoint cycles. Therefore, the cycle indicator of 

h=(hl,h,,...,h,) is 
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Hence, 

= i &,(x1,x2 ,...) X”J. 
i=l 

This proves the theorem. q 

3. Enumeration of equivalence classes 

In this section we will first find the cycle index of the permutation group G,, and 

then use it to obtain an enumeration formula for the number of equivalence classes of 

subsets (or k-subsets) of 2,. 

Let u be a positive integer and have the factorization (1.10). From number theory, 

there are integers zl, z2,. . . , z, such that 

For any teZ,, set 

ti=tzi n py (modp;‘) (1QiQr). 
j#i 

lij<* 

Then the map fl: 

Pw=(~l,~*>...,~,) (3.1) 

is an isomorphism from Z, to @l= 1 ZP~. And it is easy to see that gcd(t, v) = 1 if and 

only if gCd(ti, pi) = 1 (1 ,< i < r). 

Write 

G,q,={~i(ti,si))(ti,~i)~Tp~} (1 di<r), (3.2) 

where ~i(ti,Si) means the permutation on ZP~ such that for aiEZ,:c, oi(ti,si)Ui= 

(tiUi+si)i, where <tiai+si)i is the smallest nonnegative residue of tiai+si modulo 

pTi and is regarded as an element of G,fz (1 < i,<r). 

We now prove the following theorem. 
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Theorem 3.1. G, is isomorphic to the direct product of G,:, (16 idr): 

(3.3) 

and then 

PG”(Xl,XZ, . . . ,x,)= i PGp+, (x1,x 2, . . . ..Q). (3.4) 
i=l ’ 

Proof. Let (t, s) be a given element of T,, /3 be as defined in (3.1), fi(t)=(tr, tZ, . . . , t,), 

and fi(s)=(s1,s2, . . . ,s*). Then we have gcd(ti,pi)= l(1 <i<r), SO (ti,Si)ETpf’ (1 <iid). 

We can induce from a(r,.s) a permutation S((tI, t2, . . , t,), (sl, s2,. . . , s,)) on @1=, 

Z,: as follows: 

$(tl,t2,...,fr), (s1,s2,...,sl))(a,,a2,...,a,) 

=(<tlal+sl)l, (t2a2+S2)2,...r (t,a,+s,),), 

where (al,az,..., a,) is any element of @l=r ZPt. Write 

G”={o((t,,t,,...,t,), (S~,S~,...,S,)))(~~,SI)ET~~’ (ldi,<r)). 

Then it is easily seen that 

G”EG”. 

On the other hand, for oi(ti,Si)EGpl, and aiEZ,,;,, 

oi(ti,Si)Ui=(tiUi+Si)i (1 <i<r). 

Combining this and (3.5) we have 

~((t,,tz,...,t,), (S1,S2,...,SI))=(~l(tl,S1), ~2(t2,S2),...,~r(tr,SI)), 

(3.5) 

(3.6) 

where (rrr (tl, sl), a2(t2, sq), . , or(tr, s,)) means such a permutation on @i= r Z,;, that 

for each (al, a2, . . . ,a,)E@l= I Z,:,, 

(or(t~,sr), 02(t2,4, . . . ,dLS,))(aba2, . . . ,a,) 

=(~l(tl,Sl)al, 02(t2,S2), ,.. ,~r(tr,Sr)ar). 

Clearly, 6((t r, t2 ,...,t,), (~1,~Z,~~~ ,s,)) and (ol(tl,slh ~~(t~,sd, . . ..dt.,s,)) are 
uniquely determined from each other. 

Moreover, if also (t’,s’)ET,, P(t’)=(t;, t;, . . . , t:), and fi(s’)=(s\,s$, . . . ,s:), then for 

any (ar,a2,...,a,)E@j=r Z,p, 

e((t;,r;, ... ,t:), Vl,s;, . . ..s.))~((t,,rz ,...,t,),(~~,~~,...,s,))(a,,a,,...,a,) 

=o((t’~,t;,...,t:),(s;,~;,...,s:))(~~(t~,s,)a,,a,(t,,sZ)a2,...,~~(t~,s,)a,) 

=(~l(t;,s;)~l(tl,s1)u1,~Z(f;,s;)BZ(tZ,sZ)a2, . . . ,a,(t:,s:)(T,(t,,s,)a,). 
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Thus, we have proved 
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(3.7) 

Combining (3.6) and (3.7) we get (3.3). Since isomorphic groups have the same cycle 

index, we obtain (3.4). This completes the proof. 0 

From Theorems 1.1 and 3.1, we immediately obtain the following theorem. 

Theorem 3.2. The number of equivalence classes of k-subsets of Z, is 

1 ) x=0 
where PCpY are given in (1.6)-( 1.9). And the number of equivalence classes of all subsets of 

Z, is 

[ 
& P,p’,(x+1,x2+1 )...) xPf’+l) 

i=l ’ 1 .X=1 
Applying Theorem 3.2 to the number of inequivalent cyclic difference sets, we have 

the following theorem. 

Theorem 3.3. Let v, k, I be positive integers and J.(v - 1) = k(k - 1). Then the number of 

inequivalent (v, k, A) cyclic difference sets is less than or equal to 

1 

k! K > 
?!& k ; PGp.,(x+1,x2+1 )..., xP4’+1) > 

izzr ’ 1 x=0 
and the number of all inequivalent nontrivial cyclic difference sets in Z, is less than or 

equal to 

[ 
k P,p,,(x+1,x2+1 )...) xPI’+l) 

I 
-2(v+ 1). 

i=r ’ x=1 

Of course, the upper bounds, in general, are very coarse. 
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